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Abstract. We investigate the trapping of particles on  regularly multifurcating Cayley trees 
by using random walk methods.  In order  to find a good approximation for the survival 
probability of the walker, we use a cumulant expansion, and  obtain an  exact expression 
for the variance of the range of nearest-neighbour random walks; the expressions are  
corroborated to high accuracy by simulation calculations. The method may turn out  to be 
useful for more complex problems, such as  walks on ultrametric spaces.  

1. Introduction 

The interest on random walks ( R W ~ )  on regular lattices (as for instance, simple cubic) 
is kindled by the possibility which it offers to the study of dynamic processes (such 
as energy transfer, charge transport and recombination, chemical reactions) in crystal- 
line environments [ 1-31. Thus it is possible to investigate reactions under diffusion- 
limited conditions, as for instance the annihilation of mobile charge carriers of opposite 
sign which react on encounter with each other. One example which has attracted 
considerable interest during the last few years is the trapping problem [ 1,3,4]. This 
describes the diffusion of a particle among immobile traps, which are randomly 
distributed over the lattice with density p .  Here one is interested in the survival 
probability of the particle during n steps, 6,. However, the more the description of 
amorphous solids comes into general scrutiny [3,4], the more one is tempted to carry 
over those ideas, gained for regular environments, to concepts which model disorder: 
prominent representatives for systems without translational symmetry are for instance 
fractals [5-81 or  ultrametric spaces ( U M S ~ )  [9-121. Here it is worthwhile to notice that 
a natural link between ordered and disordered systems is provided by regularly 
multifurcating Cayley trees (CTS): on the one hand these structures show similarities 
to high-dimensional regular lattices [13, 141, whereas on the other hand they are a 
special case of hierarchical systems such as U M S S  [15, 161 (used to model energetic 
disorder). Thus the study of CTS may yield valuable insights and is a testing ground 
for methods for the investigation of disordered materials. 

In this article we study trapping for nearest-neighbour RWS on CTS. As is usual for 
the trapping, a completely general analytical treatment is out of reach because of 
mathematical difficulties [ 1-31. In the trapping problem the range R, of the R W  plays 
a crucial role [ 171. R,  is a random variable which denotes the number of distinct sites 
visited in n steps. Apart from one-dimensional nearest-neighbour RWS, for which the 
whole distribution R, is known analytically [ l ,  181, far less is known in general cases: 
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here one has either to resort to simulations for the range [ l ,  2,19,20] (for fractal or 
ultrametric structures see [7] and [21]), to rather elaborate analyses of higher moments 
of the range, such as the variance V, [22-241 (of course, the j u t  moment of R,,  
denoted by S, ,  is well known in the physical literature since the pioneering works of 
Montroll and Weiss [25]), or to limit theorems [26,27] for large stepping number n. 
Similarly, much effort has been spent in establishing the leading term of 6, for large 
n. One finds [18,28-351 on d-dimensional lattices log(&,) = - C n d ' ( d i z )  (where C is 
a positive constant), i.e. a decay which is slower than exponential for all finite d. 
However, it turns out that this asymptotic form is valid only for very small survival 
probabilities [36,37]. 

Hence we use a cumulant expansion [2] as an appropriate approach for analysing 
the decay of 6, on CTS for moderately large n. A central point here will be the derivation 
of an analytical expression for the second-order cumulant, the variance V,, for which 
we use generating function techniques. As we show, our derivation also requires the 
knowledge of the first two terms in the expansion of S, ,  the average of R,. For both 
S,  and V,, we show by comparison to numerical studies that their asymptotic limits 
are reached quite fast: both quantities increase linearly with n, a result which agrees 
with the general findings of Jain and Orey for strongly transient RWS [22]. Moreover, 
the simulation shows that for ramified CT (branching ratio larger than three) the 
second-order cumulant expansion is sufficient to fit the exact decay &,, in all regimes 
of physical interest. 6fl shows a pure exponential decay without significant deviations 
over several orders of magnitude. This again stresses the infinite effective dimension 
of CTS for large branching ratios. 

The course of the paper is as follows: In the second section we outline the calculation 
of the survival probability of a particle diffusing among traps. In section 3 we establish 
the mathematical methods which allow us to express the variance of the range in terms 
of generating functions. In section 4 we apply the theory to regularly multifurcating 
CTS, for which we obtain exact, close analytical expressions. The analysis of these 
results for large n is given in section 5 .  Using Tauberian arguments, we find for CTS a 
linear asymptotic dependence of the variance V,, on the number of steps, n, in agreement 
with the prediction of Jain and Orey [22]. We also establish that the variance diminishes 
for increasing CT branching ratios. These analytical results are compared with numerical 
studies in section 6. Both for the mean and for the variance we find excellent agreement 
between the asymptotic form and the Monte Carlo simulation data. This allows us to 
give a good approximation for 6,, which is corroborated by the simulation: for high 
cT-branching ratios 6fl may be approximated to a very high accuracy by an exponential 
form. Section 7 is devoted to a summary; technical details are relegated to the appendix. 

2. The survival probability 

Here we follow the ideas for treating trapping, as developed for regular lattices [2]. 
For a particular realization of the RW, we denote by R ,  the number of distinct sites 
visited in n steps. Then the probability 6, that the RW is not trapped up to step n is 
given by 

6, = ( ( 1  - p ) R " )  (1) 

where p is the trap concentration, and the average (.) is taken with respect to all 



Trapping on Cay ley  trees 5613 

possible walk realizations. By introducing A = -In( 1 - p ) ,  equation (1) can be recast into 

where K]., is the j t h  cumulant of the n-step walk. The first two cumulants, for instance, 
are given by 

and 

i.e. they are the mean S, and  the variance V, of the distribution R,. 

approximate the full expansion of equation (2) by the first N terms: 
Because, in general, higher cumulants are not known explicitly, one is tempted to 

Since it is possible that the neglected cumulants show a faster increase for large n than 
the first N ones, equation (5) may be a good approximation only in a regime of a 
small or medium number of steps. The restriction N = 1, the so-called Rosenstock 
approximation [38], is a good description of 6, only for a very restricted range of 
decay and  for three-dimensional lattices [2]; deviations from this approximation are 
very pronounced for dimensions d = 1 and  d = 2. Beyond d = 1, the second-order term 
62,n approximates 6,, excellently over several orders of magnitude. We will find a 
similar behaviour on CTS, namely slight deviations of from the numerically 
computed &,,, and very good agreement between 6z.n and 6,. 

Remarkably, for general lattices the first cumulant S,  is easily amenable to an  
analytical investigation using generating functions. The determination of the second 
cumulant, the variance V,, is considerably more involved. We thus devote the next 
sections to the derivation of an  analytical expression for the variance V, on C T ~ .  

3. Calculation of the variance 

In this section we give a n  expression for the variance V, using well-established R W  

techniques [ 17,25,39]. For a quite general case, Jain and Orey [22] demonstrated that 
V, depends linearly on the stepping number n, if the RWS are strongly transient: V, = C n .  
(For a definition of the term strongly transient see [17], [22] or [23]. Examples are all 
RWS on d-dimensional lattices for d 3 5, but also RWS on CTS.) In order to calculate 
the constant C we make use of generating functions. These methods are widely used 
on regular lattices [25,39], but carry readily over to other homogeneous lattices, such 
as CTS. 

The procedure is as follows: We first introduce the stochastic variable Z,, called 
the indicator. Zi equals unity if the RW hits a new site at step i and is zero otherwise. 
Then the range of the walk is given by 

n 

R, = Zi. 
, =o 
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Now we define 

Since we have Vn = (R:)  - ( R n ) > ,  equation ( 7 )  implies that 
vn = Qn + s, - s:. (8) 

To evaluate V,, since S ,  is known for CTS [13,40-421, it remains to calculate the term 
Qn in equation (8). For that we mention that IiZj = 1 ,  with 0 s  i < j ,  holds if and only 
if a walk visits a new site at step i and a new site later at step j .  Obviously, setting 
( I o  = l ) ,  the expectation of this event can be written alternatively as 

where FI”(0, x )  is the probability that the walk starts in 0 and reaches x in the ith 
step for the first time without having been at y before. Fn(x,  y )  is the probability that 
the walk reaches y for the first time in step n when it started at x. For computational 
convenience, we set Fo(O, x )  = So.;, F t ’ ( 0 ,  x) = aOx and Fn(x,  x )  = 60n, which is a slightly 
different notation from the one in [25]. Switching over to generating functions, from 
the last equations we obtain 

X 

Q ( 2 )  = c ZnQn = 2(1 - z ) - ’  c F‘”(0, x ;  z ) F ( x ,  y ;  z )  ) 
n = O  ( x  \ f X  

(10) 

where z denotes the generating variable. 
It remains to derive an expression for F”’(0, x ;  z ) :  one can decompose the probabil- 

ity c(0, x )  into two parts, namely to visit x with and without having been at y before. 
Thus for x and y # x one gets 

or, written in terms of generating functions 

F ( 0 ,  x ;  z) = F”’(0, x ;  z ) +  F’”’(0, y ;  z ) F ( y ,  x ;  z) (12) 
from which one obtains the expression 

With equations (10) and (13) we are able to express Q ( z )  fully in terms of the first 
passage functions F ( x ,  y ;  z ) .  Note that equation (13 )  is valid for RWS on arbitrary 
lattices. Moreover, the summation over pairs of points ( x ,  y )  can be simplified for RWS 

which obey further symmetries. Thus, firstly, if the R W  is symmetric (as is the case 
here) one has F ( x ,  y ;  z) = F ( y ,  x; z ) ,  for all pairs of points { x ,  y } .  Therefore Q ( z )  reads 

(14) 

We note furthermore that regular cubic lattices, U M S S  and regular multifurcating C T ~  

are homogeneous, which means that all points of the lattice are equivalent. For such 
homogeneous spaces many calculations simplify, paralleling the behaviour for transla- 
tionally invariant d-dimensional Euclidean lattices. Here, by using the relation 
F(x ,  y ;  z )  = F(0 ,  y - x ;  z ) ,  equation (14) may be rewritten as 

Q ( z )  = 2( 1 - z)- ’  1 F ( 0 ,  X ;  Z )  1 F ( x ,  y ;  z ) [  1 + F ( x ,  y ;  z ) ] - ’ .  
Y y # x 

Q ( z ) = 2 ( 1 - ~ ) - ’ 1  F ( 0 , x ;  Z )  C F(O,y ;  z ) ( l + F ( O , y ;  z ) ) - ’ .  ( 1 5 )  
x i + o  
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One should remark that the last step leads to the decoupling of the twofold sum over 
(x, y )  into two single sums. They furthermore depend only on F ( 0 ,  x; i) ,  a classical 
quantity in the RW study. Note that we can express Q ( z )  also in terms of P ( 0 ,  x; i ) ,  

the generating function of P, , (O,x) ,  the probability of being at site x in step n: on 
homogeneous lattices [ 2 5 ]  F ( 0 ,  x; i )  and P ( 0 ,  x; z )  are connected by F ( 0 ,  x; i )  = 
P ( 0 ,  x; i ) / P ( O ,  0;  i ) .  

4. Regularly multifurcating Cayley trees 

In this section we apply the obtained general results to regularly multifurcating CTS. 

The CTS are simply connected graphs with no loops. The CT branching ratio 6 is given 
by the number of bonds from each site (see figure 1). We consider next-neighbour 
hopping between sites; thereby each of the 6 neighbours of a site can be reached with 
equal probability l / b .  This R W  problem was investigated by a number of authors, 
recent references being [ 13,40-431. These works have obtained the probability of 
reaching site x in the nth step, P,,(O, x), the mean number of visited sites, S,, and also 
the first passage probabilities F,,(x, y )  in terms of generating functions. The result for 
S ( i )  is 

6 - 2 + [ 6 ' - 4 i 2 ( 6 -  l)] '  ' 
2(6-1) (1  -i)' 

S ( i )  = 

For F,,(x, y )  it is convenient to introduce the CT distance d,, which is defined as being 
the minimal number of bonds which connect x and y.  Because of symmetry one has 

(17 )  
where f( i )  is the generating function of the first passage probability to a neighbouring 
site of the origin: 

F ( x ,  Y ;  z )  = [ f ( z W  

Figure 1. The regular11 multifurcating Cayley tree with branching ratio b = 3. 
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We now calculate Q(z)  by summing in equation (15) over shells. For this we set 
a = b - 1 and notice that the ith shell around the origin consists of the ba'-' points 
which have distance i from 0. Hence we change the summation over all points into a 
summation over distances, weighted by the number of sites in each shell. Thus 

1 +f(z) z€ 

F ( 0 ,  X; z )  = 1 + C ba'- ' (f(z)) '  = 
x r = l  1 - af(z) . 

This agrees with a standard RW result [ 2 5 ] ,  in which S (z )  and F ( 0 ,  x; z )  are connected 

1 
S(Z) =-E F ( 0 ,  x; z )  

1-2  x 

as can be verified by comparing equations (16), (18) and (19). Furthermore 

where 77 is defined through the series 

From equations (15), (19) and (21) we obtain finally 

the sought-after, exact expression. 

5. The asymptotic form of S, and V, 

As mentioned in section 3, the knowledge of S (z ) ,  equation (16), and of Q(z), equation 
(23), allows us to determine the variance Vn for arbitrary n ;  one has only to perform 
a Taylor expansion in z, and to make use of equation (8). We will use this method in 
section 6, in order to obtain the values for Vn for n up to n = 20 and for several 
branching ratios b. On the other hand, from the above equations it is also possible to 
obtain the asymptotic behaviour of V, for large n, as we now proceed to show. 

First of all we turn to the asymptotic behaviour of S, ,  which follows from its 
generating function S( z ) ,  equation (16). Standard arguments, obtained through 
Tauberian theorems, give as the leading term [13]: 

b - 2  sn 5- n + .  
b - 1  
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In our further analysis we also need the second term in this expansion; as derived in 
the appendix, one has a more accurate expression: 

b -2 b 2 - 2 b + 2  s, -- n +  + . . .  
b - 1 b 2 - 3 b + 2  

from which it follows that 

b - 2  ' 2(b2-28+2)  
b - 1  

si=(-) n'+ (b -1 )2  n S  . . .  

The term Q ( z ) ,  equation (23), can be analysed along the same lines (see the appendix), 
and  one has 

b - 2 '  1 
b - 1  U 

Q, = (-) n2 + 7 [2b2 - 2 b( b - 2) ~ ~ ] n  + . . , 
Now, from equation (8) together with equations (25)-(27), the variance V, for large 
n follows. Note that the quadratic terms drop  out, so that we have finally 

1 
V , - - [ b 2 + b - 2 - 2 b ( b - 2 ) r , ] n + .  U' . . (28) 

where T,  stands for the series 

The variance V, thus depends linearly on the number of steps n [22]; moreover, 7, is 
finite for all a 3 2, since it is bounded by the geometric series ( l / a ) " .  Furthermore, 
for large branching ratios, a +CO, T, tends to i, and from equation (28) we see that 

v, + 0 as b + m .  (30) 

Thus on CTS the distribution becomes very narrow when the branching ratio b gets large. 
To close this section, we analyse the special case for which b takes the value 2. 

Then the CT shrinks to a linear chain, on which a one-dimensional nearest-neighbour 
RW takes place. The formulae for Q ( z ) ,  equation (23), and for S ( z ) ,  equation (16), 
yield the correct expressions even in this special case, and  the derivation of V, becomes 
equivalent to Torney's [24] resulting in 

V, = (4 log 2 - 8/7r)n  +. . . (31) 
a well known fact in the RW literature [ l ] .  

6. Numerical results 

In this section we give comparisons of computer data to the analytically obtained 
results of the last sections, and  simulation results for 6, for different trap concentrations 
p and branching ratios b. 

First of all we have performed explicit enumerations on CTS with branching ratio 
b between 3 and 9. We have obtained the exact values for S,  and V, from n = 18 (for 
b = 3) maximum to n = 10 (for the larger b).  Furthermore, we have also evaluated 
explicitly the generating functions for S ( z ) ,  equation (16), and Q ( z ) ,  equation (23), 
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using the computer program MACSYMA. The values of S ,  and V, evaluated by both 
methods are in complete agreement. 

Secondly, to establish how quickly the asymptotic domain is reached we performed 
Monte Carlo simulations for CTS with branching ratios b between 3 and  20 and  compared 
the results with those from equations ( 2 5 )  and (28). For several n values we used u p  
to 50000 realizations of the R W .  Characteristic results for n between 100 and  1000, 
where 10 000 RW realizations were used, are shown in figures 2 and 3. We observe that 

1 0 0 0  

8 0 0  

600 

5, 

400 

200 

200 400 600 800 1oc 

I 

i 

3 
b 

n 

Figure 2. The mean number of visited sites, S,,, plotted as a function of the number of 
steps, n. The straight lines are the analytical data obtained from equation ( 2 5 )  for several 
values of b. 

6 00 3 

4 0 0  L 

v, b 
5 

6 

7 2 0 0  
a 

200 400 600 800 1000 

n 

Figure 3. The variance V,, of the R W  range plotted as a function of the number of steps, 
n. The straight lines are fits to the simulated data for several values of 6. 
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the agreement between the simulations and analytical forms is excellent, even for rather 
small ( n  = 100) numbers of steps. 

We find that the S,, extracted from the numerical data agree extremely well both 
with former simulations by Bleris er a1 [44], and also with the analytical result from 
equation ( 2 5 ) .  Table 1 summarizes results for several values of the branching parameter 
b. The variance V,,, equation (28), which we have derived analytically in the course 
of this article, shows a similar good agreement with the simulation results. In figure 3 
the simulated data are fitted by straight lines, and  the fit parameters are listed in table 
2 .  They are compared with the slope of V,, which results from equation (28). As is to 
be seen, there is no significant difference between both results. 

Now we turn to the trapping on CTS. We have performed numerical simulations 
for several branching ratios b. To obtain the decay function 6,,, we used equation (1) 
and  provided the distribution of R, by considering up  to 500000 realizations of the 
walk per stepping number n. The exact values in figures 4 and 5 are indicated by solid 
circles, connected by full lines. Furthermore, from the knowledge of the distribution 
we calculated the first five cumulants in order to compare the exact result from $quation 
(1) with different orders of the expansion in equation (5). The values of tN,,, are 
indicated for N = 1 by triangles and for N = 2 by squares. Because the terms QN,,, for 
N = 3,4,  5 coincide with 6)2,n, they are not shown in figures 4 and 5. Moreover, the 

Table 1. Data for S,, for different branching ratios b. S,, is given in the form S,, = 
an + p +.  . . . The index a refers to the analytical data, the index s to the simulated data. 

b f f . 4  P* m, P ,  

3 0.500 00 
4 0.666 67 
5 0.750 00 
6 0.800 00 
7 0.833 33 
8 0.857 14 
9 0.875 00 

10 0.888 89 
15 0.928 5 1  
20 0.947 37 

2.500 00 
1.666 67 
1.416 67 
1.300 00 
1.233 33 
1,19048 
1.16071 
1.138 89 
1.082 42 
1.058 48 

0.500 00 
0.666 70 
0.750 00 
0.800 00 
0.833 30 
0.857 20 
0.875 00 
0.889 00 
0.928 60 
0.947 40 

2.497 00 
1.673 00 
1.423 00 
1.278 00 
1.240 00 
1.167 00 
1.16000 
1.122 00 
1.082 00 
1.059 00 

Table 2. Data for V,, for different branching ratios b. V,, is given in the form V,, = yn + S. 
The index a refers to the analytical data, the index s to the simulated data. 

3 
4 
5 
6 
7 
8 
9 

10 
15 
20 

0.603 25 
0.392 78 
0.288 63 
0.227 08 
0.186 69 
0.158 25 
0.137 20 
0.121 01 
0.075 85 
0.055 13 

0.602 60 
0.392 10 
0.288 70 
0.227 80 
0.186 60 
0.158 40 
0.137 30 
0.121 00 
0.075 59 
0.054 91 

-6.016 
- 1.473 
-0.916 
- 1.002 
-0.410 
-0.389 
-0.300 
-0.195 
-0.013 

0.016 
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t 
I I 

0 1000 2000 3000 

n 

Figure 4. The logarithm of the survival probability &,,, is plotted as a function of the 
number of steps, n,  for three different trap concentrations. The branching ratio is b = 3. 
The symbols are explained in the text. 

0 

-10 

"f"n 
D > > 

b = 3  

0 50 100 

n 

Figure 5. The same situation as in figure 4 but for a fixed trap concentration p = 0.25, and 
for two different branching ratios b = 3 and b = 9. 
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dotted line gives the values for 6)2,n by using the analytical forms of S,  and V,, i.e. 
(32) 

with S,  and V, taken from equations ( 2 5 )  and (28). 
Figure 4 shows the decadic logarithm of the decay function, log 6,, plotted against 

the number of steps, n, for three realistic trap concentrations p = 0.001, 0.005 and  0.01, 
and for branching ratio b = 3. One notices the pure exponential decay over the whole 
range without any significant deviations. All 6)N,n and 6;,, coincide fully with the 
exact data. This is a situation similar to the higher-dimensional lattice ( d  = 3) in [ 2 ] ,  
where the first approximate terms also fit the exact decay very well. In one dimension, 
on the other hand, these approximations are rather poor, and one has to go up  to 6+ 
in order to fit 6, reasonably over an  order of magnitude in the decay. 

Figure 5 shows the influence of higher trap concentrations ( p  = 25%) for different 
branching ratios b = 3 and  b = 9. As before, the decay stays nicely exponential even 
at  such high trap densities. However, one notices that for b = 3 a deviation from the 
Rosenstock approximation 6,,, is clearly visible. For increasing branching ratio the 
difference to the simulated decay becomes smaller: the CT looses any resemblance to 
the linear chain ( b  = 2 ) ,  for which the low-order terms 6)N,n are no good approximations. 
Moreover one notices that in figure 5, 6z,n fits the real decay very well. The analytical 
form 6,2",, displays the correct slope, but is slightly shifted; this is due  to the fact that 
we have obtained only the first term of V, in equation (28) ,  and have neglected the 
corrections in @;,,. 

Concluding this section we note that the very good agreement between 6 ,  and 
62,n is impaired only for small branching ratios ( b  = 3) and  for very large trap densities 
(beyond p = 50%): even for such high concentrations, for b = 9 the term 62,n describes 
the real decay very well. Thus 62,n (and also 6:,,) is an  excellent approximation for 
the decay due  to trapping for all realistic trap concentrations, covering many orders 
of magnitude of the decay. All simulation results point to, for large n, a purely 

for d +E. If this is the case, this would impose a (at most) linear increase on the 
absolute value of all cumulants (see equation ( 2 ) ) .  We extracted the behaviour of the 
first five cumulants from our numerical data and  found indeed a well defined linear 
decrease for the third cumulant. For the higher cumulants, however, the error bars 
become too large to permit a definite conclusion. Finally, we cannot decide based on  
simulations alone whether the exponential decay also remains valid for very large 
stepping numbers, o r  whether one has a cross-over to a slower decay. 

6 :, , = exp ( -AS,, + A ' V, / 2 )  

exponential decay of 6,,, as would also follow from the relation 6, =exp(-Cnd"d'2' 1 

7. Summary 

In this article we have investigated the trapping problem on regularly multifurcating 
CTS. A cumulant expansion allowed us to deal with small to medium numbers of steps. 
We were able to derive an  exact analytical expression for the second cumulant of the 
range, the variance V, .  We thus found that V, increases linearly with n when the 
number of steps is large. This is in agreement with rigorous mathematical predictions. 
Moreover, the range distribution peaks more and more around S,  when the CT 

branching ratio increases. Numerical simulations show that for CTS with large branching 
ratios the second-order cumulant expansi2n for the decay due to trapping agrees very 
well with the exact survival probability @", a result which holds even for high trap 
densities. 
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We expect that elements of our analysis could be used for the determination of 
higher-order cumulants of R, on CTS and also for the study of more complex structures, 
such as UMSS. This is a fact which would help towards understanding the dynamics 
on systems without translational invariance. 
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Appendix 

Here we extract the asymptotic behaviour of S,, equation ( 2 5 ) ,  for large n from the 
generating function S ( z ) ,  equation ( 1 6 ) .  Our  basic assumption is that S,  can be written 
in the form 

S , = a n P + y n 6 + o ( n s )  ( ' 4 1 )  
with p > 6. This assumption is necessary since we want to apply Tauberian arguments 
twice: the monotonicity of the leading term is guaranteed from the monotonous increase 
of S,, but for the second term we lack such information. Therefore the validity of 
equation ( A l )  must be confirmed by numerical results (see table 1 ) .  

Now we switch over to generating functions, and establish first the pure 
n-dependences : 

( n J =  2 rz - n .  re's 1 r:")  = n 

Thus we have 

1 I 

r o ( z ) =  C z " = -  
n e 0  1 - z  

r , ( z ) =  1 n z n = L  
n = O  ( 1 - z ) 2  

z ( l + z )  r z ( z ) =  n 2 z n  =- 
n =o ( 1 - z ) 3 .  

X 

These series converge for all / z l <  1, but they diverge for z + 1 - .  Writing x = 1 - z, we have 

1 
r o ( x )  = - 

X 

1 1  r (  )=- - -  
l X  x2 x 

2 3 1  r 2 ( x )  =---+- 
x 3  x z  x 
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and in general for x+.0Of, 

for ail a > -1. 

from equation (16), 
Kow we can determine both coefficients and exponents in equation (Al ) .  Starting 

b - 2 + [b' -4z2( b -  l)]"' 
2( b - I ) (  1 - z)' 

S ( z )  = 

we set z = 1 - x  and obtain 

1 b -2  
S ( x )  -7 -+O(l /x)  

X- b - 1  

which diverges in the limit x +. 0'. Thus from this asymptotic behaviour and  from 
equation (A6) we have 

which is just the result found in the literature [ 13,421, equation (24). 
To obtain the next term of the expansion, we simply subtract ( b  -2)r , (z) / (b  - 1) 

from equation (A9); thus the linear n dependence of the generating function drops 
out, and  we repeat our analysis for S ( z ) - ( b - 2 ) r l ( z ) / ( b -  1 ) .  Substituting again 
z = 1 - x, and  taking x + O', we find 

b -2  1 b2 -2b+2  
b - 1  x b 2 - 3 b + 2  S(x)-- r l ( x )  =- +0(1) 

which yields, from equation (A5), a constant contribution to S,. Hence, we obtain 
equation (25): 

b - 2 b2 - 2b + 2 s, -- n +  + . . . .  
b - 1 b2-3b + 2  

The analysis of Q(z)  runs along the same lines. Again, the monotonous increase of 
the first term of Q, follows from equation (7), but that of the second term must be 
assumed. We first have 

[ ? ( u , f ( z ) ) + i ] )  (A14) 

which is equation (23). For small x = 1 - z, we have two contributions to the divergence: 
firstly, of course, the factor 1/(1 -z) ,  which yields l / x ,  and, secondly, the term 
I/[l-af(z)] ,  which contributes (b-Z)/(xb).  This is due  to the expansion of 
f ( z =  1 -x ) ,  equation (181, whose first terms are 

b ( 3 ~  - 1) 
X +  X 2 + .  f ( x )  - - ~ 

1 b 
U a ( a - 1 )  a(a-1)3 

All other terms in equation (A141 remain bounded. The exact analysis, paralleling that 
of S,, finally yields equation (27). 
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